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Read these instructions carefully before making the exam! 

 

• Write your name and student number on every sheet. 

• Make sure to write readable for other people than yourself. Points will 

NOT be given for answers in illegible writing. 

• Language; your answers have to be in English. 

• Use a separate sheet for each problem. 

• Use of a (graphing) calculator is allowed. 

• This exam consists of 4 problems.  

• The weight of the problems is Problem 1 (P1=25 pts); Problem 2 

(P2=20 pts); Problem 3 (P3=20 pts) and Problem 4 (P=25 pts). 

Weights of the various subproblems are indicated at the beginning of 

each problem.  

• The grade of the exam is calculated as (P1+P2+P3 +P4+10)/10. 

• For all problems you have to write down your arguments and the 

intermediate steps in your calculation, else the answer will be 

considered as incomplete and points will be deducted. 

  



PROBLEM 1 

Score: a+b+c+d+e=5+5+5+5+5=25 

 

The Dieterici equation is an equation of state that is sometimes used to describe a real gas: 

𝑃(𝑉 − 𝑏) = 𝑅𝑇𝑒−
𝑎
𝑅𝑇𝑉 

 

in which 𝑃, 𝑉, 𝑇 are the pressure, the molar volume and the temperature of the gas, 

respectively. The constant 𝑎 controls the attractive molecular interactions and the constant 

𝑏 corrects for the volume of the gas molecules. 

 

a) Show that for a gas described by the Dieterici equation (a Dieterici gas), the critical 

temperature, pressure and volume are given by: 

 

(𝑇𝑐, 𝑃𝑐, 𝑉𝑐) = (
𝑎

4𝑅𝑏
,
𝑎

4𝑒2𝑏2
, 2𝑏) 

 

b) Describe what happens if a Dieterici gas is compressed at a temperature that is larger 

than the critical temperature. 

c) Show that the second and third virial coefficient of a Dieterici gas are given by: 

𝐵(𝑇) = 𝑏 −
𝑎

𝑅𝑇
 and   𝐶(𝑇) =  𝑏2 −

𝑎𝑏

𝑅𝑇
+

𝑎2

2(𝑅𝑇)2
   

d) Calculate the Boyle temperature 𝑇𝑏 of the Dieterici gas. Why is the name Boyle 

temperature appropriate? 

e) Use reduced coordinates to rewrite the Dieterici equation. When is it useful to use 

reduced coordinates? 

 

  



PROBLEM 2 

Score: a+b+c+d+e=4+5+3+3+5=20 

 

 

 

 

 

 

 

 

 

The Clausius-Clapeyron equation is: 

  
𝑑𝑃

𝑑𝑇
=
∆𝑆

∆𝑉
 

 

a) Describe in words when this equation can be applied and explain all the symbols in the 

equation. 

b) Derive the Clausius-Clapeyron equation starting from the premises that the Gibbs free 

energy per molecule (𝑔) in phase 1 and phase 2 is equal in the situation when 

equilibrium between these phases exists. Thus, 𝑔1(𝑇, 𝑃) = 𝑔2(𝑇, 𝑃). 
c) Describe in words what happens at the critical point. 

d) Use the Clausius-Clapeyron equation to explain that the substance in the phase diagram 

expands upon melting.  

 

Consider the vapour curve in the phase diagram.  Assume that 1) the latent heat 𝐿 (in Joule 

per mole) for vaporization is independent of temperature, 2) the vapour obeys the ideal gas 

law and 3) the volume of the liquid is small compared to the volume of the vapour. 

 

e) Show that under these assumptions the vapour pressure is given by: 

  

𝑃𝑣𝑎𝑝 = 𝐶𝑒
−
𝐿
𝑅𝑇 

where, 𝐶 is a constant. 

 

 

 

 

 

 

  

P

T

solid

liquid

vapour

triple point

critical point

The figure on the right gives a typical 

pressure (𝑃) – temperature (𝑇) phase 

diagram of a one-component system with 

only one triple point. 

 



PROBLEM 3 

Score: a+b+c+d+e=4+4+4+5+3=20 

 

Consider a (three dimensional) ideal gas of ultra-relativistic fermions with spin 
1

2
 that is 

confined to a volume 𝑉 and in equilibrium with a heat bath at temperature 𝑇 and a particle 

reservoir with chemical potential 𝜇. For an ultra-relativistic fermion the contribution of its 

rest mass to the total fermion energy 𝐸  is negligible with respect to the contribution due 

to its momentum. 

 

𝐸2 = 𝑝2𝑐2 +𝑚2𝑐4 ≈ 𝑝2𝑐2⇒ 𝐸 ≈ 𝑝𝑐   

 

a) Show that for this gas the total number of particles is, 

 

𝑁 =
8𝜋𝑉

ℎ3𝑐3
∫

𝐸2𝑑𝐸

𝑒𝛽(𝐸−𝜇) + 1

∞

0

 

 

HINT 1: The density of states for a spinless particle confined to an enclosure with volume 

𝑉 is (expressed as a function of the particle’s momentum p): 

 

𝑔(𝑝)𝑑𝑝 =
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 

 

b) Show that at zero absolute temperature (𝑇 = 0), the maximum energy 𝐸𝐹 of an fermion 

in this gas is, 

𝐸𝐹 = ℎ𝑐 (
3

8𝜋

𝑁

𝑉
)

1
3
 

 

c) Show that the total energy 𝑈 of the ultra-relativistic fermion gas at 𝑇 = 0 is: 

 

𝑈 =
3

4
𝑁𝐸𝐹  

 

d) Calculate the pressure of the ultra-relativistic fermion gas at 𝑇 = 0. 

 

e) Explain how fermions at zero absolute temperature can have such high velocities that 

they are relativistic. 

  



 

PROBLEM 4 Score: a+b+c+d+e+f+g =4+3+4+4+4+3+3=25 

 

A gas of non-interacting bosons in an enclosure with volume 𝑉 is in contact with both a 

heat bath at temperature 𝑇 and a particle reservoir characterized by the chemical potential 

𝜇. A state of the gas is described by the set of occupation numbers 𝑛1, 𝑛2, ⋯ 𝑛𝑖, ⋯ of the 

single-boson states with energies 𝜀1 ≤ 𝜀2 ≤ ⋯ ≤ 𝜀𝑖 ≤ ⋯, respectively.  

 

The grand partition function 𝒵 for this gas of bosons is defined as: 

 

𝒵 = ∑ 𝑒𝛽[𝜇(𝑛1+𝑛2+⋯)−(𝑛1𝜀1+𝑛2𝜀2+⋯)]

𝑛1,𝑛2,⋯

 

 

And the probability of finding the gas in the state 𝑛1, 𝑛2, ⋯𝑛𝑖 , ⋯ is given by: 

 

 

𝑃(𝑛1, 𝑛2, ⋯𝑛𝑖 , ⋯ ) =
𝑒𝛽[𝜇(𝑛1+𝑛2+⋯)−(𝑛1𝜀1+𝑛2𝜀2+⋯)]

𝒵
 

 

a) Show that this grand partition function and probability factorize as: 

 

𝒵 =∏𝒵𝑖

∞

𝑖=1

 with  𝒵𝑖 =∑𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

𝑛𝑖

 

and  

𝑃(𝑛1, 𝑛2, ⋯ 𝑛𝑖, ⋯ ) =∏𝑃𝑖(𝑛𝑖)

∞

𝑖=1

 with 𝑃𝑖(𝑛𝑖) =
𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

𝒵𝑖
 

 

b) Give the interpretation of the function 𝑃𝑖(𝑛𝑖). 
c) Show that for bosons we have: 

𝒵𝑖 =
1

1 − 𝑒𝛽(𝜇−𝜀𝑖)
 

 

d) Prove that the mean occupation number 〈𝑛𝑖〉 of the i-th single-boson state can be 

calculated from: 

〈𝑛𝑖〉 =
1

𝛽
(
𝜕 ln𝒵𝑖
𝜕𝜇

)
𝑇,𝑉

 

 

and use this expression to calculate 〈𝑛𝑖〉. 
 

e) Show that the total number of bosons 𝑁 of the gas is given by, 

 

 
Problem continues on next page 



𝑁 =
1

𝑒−𝛽𝜇 − 1
+ [
2𝜋𝑉

ℎ3
(2𝑚)

3
2]∫

√𝜀𝑑𝜀

𝑒𝛽(𝜀−𝜇) − 1

∞

0

 

 

Discuss the origin and the meaning of the first term 𝑁1 =
1

𝑒−𝛽𝜇−1
 in the expression 

above. 

 

HINT: The density of states for a boson confined to an enclosure with volume 𝑉 is 

(expressed as a function of the particle’s momentum p): 

 

𝑔(𝑝)𝑑𝑝 =
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 

 

f) The critical temperature 𝑇𝑐 for the boson gas occurs when 𝜇 = 0. What is the physical 

interpretation of the critical temperature? 

 

g) Show that the ratio 𝑁1/𝑁 can be written as: 

 

𝑁1
𝑁
= 1 − (

𝑇

𝑇𝑐
)

3
2
 

 

 

 

  



Solutions 

 

PROBLEM 1 

 

a) 

The critical point is found when the isotherm of the gas has an infliction point, thus as, 

 

(
𝜕𝑃

𝜕𝑉
)
𝑇
= (
𝜕2𝑃

𝜕𝑉2
)
𝑇

= 0 

This gives (together with the Dieterici equation of state) three equations with three 

unknowns namely: 

 

 

𝑃 =
𝑅𝑇

(𝑉 − 𝑏)
𝑒−

𝑎
𝑅𝑇𝑉         eq(1) 

 

 

(
𝜕𝑃

𝜕𝑉
)
𝑇
=

−𝑅𝑇

(𝑉 − 𝑏)2
𝑒−

𝑎
𝑅𝑇𝑉 +

𝑅𝑇

(𝑉 − 𝑏)
(
𝑎

𝑅𝑇𝑉2
) 𝑒−

𝑎
𝑅𝑇𝑉

=
𝑅𝑇

(𝑉 − 𝑏)
𝑒−

𝑎
𝑅𝑇𝑉 (

𝑎

𝑅𝑇𝑉2
−

1

(𝑉 − 𝑏)
) = 𝑃 (

𝑎

𝑅𝑇𝑉2
−

1

(𝑉 − 𝑏)
) 

 

 

Thus (
𝜕𝑃

𝜕𝑉
)
𝑇
= 0 leads to 

(
𝑎

𝑅𝑇𝑉2
−

1

(𝑉 − 𝑏)
) = 0 ⇒

−2𝑎

𝑅𝑇𝑉3
= −

2

𝑉(𝑉 − 𝑏)
      eq(2) 

 

 

 

(
𝜕2𝑃

𝜕𝑉2
)
𝑇

= (
𝜕𝑃

𝜕𝑉
)
𝑇
(
𝑎

𝑅𝑇𝑉2
−

1

(𝑉 − 𝑏)
) + 𝑃 (

−2𝑎

𝑅𝑇𝑉3
+

1

(𝑉 − 𝑏)2
)

= 𝑃 (
−2𝑎

𝑅𝑇𝑉3
+

1

(𝑉 − 𝑏)2
) 

And (
𝜕2𝑃

𝜕𝑉2
)
𝑇
= 0 leads to 

(
−2𝑎

𝑅𝑇𝑉3
+

1

(𝑉 − 𝑏)2
) = 0       eq(3) 

 

 

Substituting equation 2 in 3 leads to 

 

(−
2

𝑉(𝑉 − 𝑏)
+

1

(𝑉 − 𝑏)2
) = 0⇒ 𝑉𝑐 = 2𝑏 

 



Substituting this in equation 2 gives, 

 
𝑎

𝑅𝑇(2𝑏)2
−

1

(2𝑏 − 𝑏)
= 0⇒ 𝑇𝑐 =

𝑎

4𝑏𝑅
 

 

and  𝑇𝑐 =
𝑎

4𝑏𝑅
 and 𝑉𝑐 = 2𝑏 in equation 1 gives, 

 

𝑃𝑐 =
𝑎

4𝑏2𝑒2
 

Consequently, 

 

(𝑇𝑐, 𝑃𝑐 , 𝑉𝑐) = (
𝑎

4𝑅𝑏
,
𝑎

4𝑒2𝑏2
, 2𝑏) 

b) 

The pressure will increase, the density will increase, but the gas will not become a liquid. 

 

c)  

Rewrite the Dieterici equation as: 

 
𝑃𝑉

𝑅𝑇
=

1

(1 −
𝑏
𝑉)
𝑒−

𝑎
𝑅𝑇𝑉 

and expand both factors on the right hand side in powers of 
1

𝑉
: 

 

𝑃𝑉

𝑅𝑇
= (1 +

𝑏

𝑉
+ (
𝑏

𝑉
)
2

+⋯)(1 −
𝑎

𝑅𝑇𝑉
+
1

2
(
𝑎

𝑅𝑇𝑉
)
2

−⋯)⇒ 

 

𝑃𝑉

𝑅𝑇
= 1 + (𝑏 −

𝑎

𝑅𝑇
)
1

𝑉
+ (

𝑎2

2(𝑅𝑇)2
−
𝑎𝑏

𝑅𝑇
+ 𝑏2)

1

𝑉2
+⋯ 

 

Thus, 

𝐵(𝑇) = 𝑏 −
𝑎

𝑅𝑇
 

and   

 

𝐶(𝑇) = 𝑏2 −
𝑎𝑏

𝑅𝑇
+

𝑎2

2(𝑅𝑇)2
 

 

d) The temperature at which the second virial coefficient is zero is called the Boyle 

temperature. 

 

𝐵(𝑇) = 0⇒ 𝑏 −
𝑎

𝑅𝑇
= 0 ⇒ 𝑇𝑏 =

𝑎

𝑏𝑅
 

 

At this temperature Boyle’s law (𝑃𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) approximately holds for a real gas. 



 

e) 

Use the reduced coordinates 𝑃̃ =
𝑃

𝑃𝑐
 , 𝑇̃ =

𝑇

𝑇𝑐
 , 𝑉̃ =

𝑉

𝑉𝑐
 in the Dieterici equation to find, 

 

𝑃

𝑃𝑐
𝑃𝑐 =

𝑅
𝑇
𝑇𝑐
𝑇𝑐

(
𝑉
𝑉𝑐
𝑉𝑐 − 𝑏)

𝑒

−
𝑎

𝑅
𝑇
𝑇𝑐

𝑉
𝑉𝑐
𝑇𝑐𝑉𝑐   ⇒ 𝑃̃𝑃𝑐 =

𝑅𝑇̃𝑇𝑐

(𝑉̃𝑉𝑐 − 𝑏)
𝑒
−

𝑎
𝑅𝑇̃𝑉̃𝑇𝑐𝑉𝑐  ⇒    

 

𝑃̃
𝑎

4𝑒2𝑏2
=

𝑅𝑇̃
𝑎
4𝑅𝑏

(𝑉̃2𝑏 − 𝑏)
𝑒
−
𝑎
4𝑅𝑏
𝑎
1
2𝑏

𝑅𝑇̃𝑉̃ =
𝑎

4𝑏2
 

𝑇̃

(2𝑉̃ − 1)
𝑒
−
2
𝑇̃𝑉̃  ⇒ 

 

𝑃̃ =  
𝑇̃

(2𝑉̃ − 1)
𝑒2𝑒

−
2
𝑇̃𝑉̃  ⇒ 𝑃̃ =  

𝑇̃𝑒
2(1−

1
𝑇̃𝑉̃
)

(2𝑉̃ − 1)
 

 

When using reduced coordinates the behaviour of different gases in these scaled 

coordinates is often vary similar and thus the unknown behaviour of a certain gas can be 

predicted from that of a gas of which the behaviour is known. This is called the law of 

corresponding states.  

 

  



PROBLEM 2 

 

a) 

This equation can be applied in the situation of a phase transition between, say, phase 1 

and phase 2 of a one-component system. ∆𝑆  and ∆𝑉 are the change in entropy and volume 

when a certain amount (1 molecule, 1 gram, 1 mole etc.) of the substance is transformed 

from phase 1 to phase 2. The equation then relates these changes to the slope of the 

equilibrium curve in the 𝑃𝑇-diagram.  

 

b) 

Take two points 𝑎 and 𝑏 at the equilibrium curve separated by 𝑑𝑇 and 𝑑𝑃 (see figure). 

Then at point 𝑎: 𝑔1
𝑎 = 𝑔2

𝑎 and at point 𝑏: 𝑔1
𝑏 = 𝑔2

𝑏 which leads to 𝑑𝑔1 = 𝑑𝑔2 when moving 

from point 𝑎 to point 𝑏.  

 

 

 

 

 

 

 

 

Gibbs free energy is given by, 

 

𝐺 = 𝐸 + 𝑃𝑉 − 𝑇𝑆 ⇒ 𝑑𝐺 = 𝑑𝐸 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 − 𝑇𝑑𝑆 − 𝑆𝑑𝑇 

 

And using the fundamental thermodynamic relation for a system with variable particle 

number: 

 

𝑑𝐸 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 

We find, 

𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁 

 

Which holds for each phase and using (𝜇 = 𝑔) this results in (𝑖 = 1,2): 

 

𝑑𝐺𝑖 = −𝑆𝑖𝑑𝑇 + 𝑉𝑖𝑑𝑃 + 𝑔𝑖𝑑𝑁 

 

We also have 𝐺𝑖 = 𝑁𝑖𝑔𝑖 ⇒ 𝑑𝐺𝑖 = 𝑁𝑖𝑑𝑔𝑖 + 𝑔𝑖𝑑𝑁𝑖 

 

Combining both expressions for 𝑑𝐺𝑖 we derive: 𝑁𝑖𝑑𝑔𝑖 = −𝑆𝑖𝑑𝑇 + 𝑉𝑖𝑑𝑃 or 𝑑𝑔𝑖 =
−𝑠𝑖𝑑𝑇 + 𝑣𝑖𝑑𝑃 where 𝑠𝑖 and 𝑣𝑖 are the entropy and volume per molecule. 

 

Thus,  

𝑑𝑔1 = −𝑠1𝑑𝑇 + 𝑣1𝑑𝑃 = 𝑑𝑔2 = −𝑠2𝑑𝑇 + 𝑣2𝑑𝑃 ⇒
𝑑𝑃

𝑑𝑇
=
∆𝑠

∆𝑣
 

 



which is the Clausius-Clapeyron equation with ∆𝑆 and ∆𝑉 expressed on a per molecule 

basis. 

 

c) 

If we proceed along the vapour curve to higher temperatures the latent heat of vaporization 

decreases and becomes zero at the critical point, also the volume change of the phase 

transition becomes zero at this point. At temperatures and pressure  higher than the 

temperature and pressure of the critical point there is no difference between the liquid and 

the gas phase.  

 

d) 

The Clausius-Clapeyron equation gives the slope of the melting curve. From the figure we 

see that this slope is positive, In the transformation from solid to liquid the entropy 

increases (∆𝑆 = 𝑆𝑙𝑖𝑞𝑢𝑖𝑑 − 𝑆𝑠𝑜𝑙𝑖𝑑 > 0). For a positive slope we should have ∆𝑉 = 𝑉𝑙𝑖𝑞𝑢𝑖𝑑 −

𝑉𝑠𝑜𝑙𝑖𝑑 > 0, and thus the volume of the substance increases upon melting. 

 

e) 

The entropy change per mole is ∆𝑆 =
𝐿

𝑇
.  

The volume change is ∆𝑉 = 𝑉𝑣𝑎𝑝𝑜𝑢𝑟 − 𝑉𝑙𝑖𝑞𝑢𝑖𝑑 ≈ 𝑉𝑣𝑎𝑝𝑜𝑢𝑟.  

The ideal gas law for one mole of vapour is : 𝑃𝑉𝑣𝑎𝑝𝑜𝑢𝑟 = 𝑅𝑇.  

Then from the Clausius-Clapeyron equation we find, 

 
𝑑𝑃

𝑑𝑇
=
∆𝑆

∆𝑉
=
𝐿

𝑇

1

𝑉𝑣𝑎𝑝𝑜𝑢𝑟
=
𝐿𝑃

𝑅𝑇2
⇒ 

 

 
𝑑𝑃

𝑃
=
𝐿𝑑𝑇

𝑅𝑇2
⇒𝑑 ln𝑃 = 𝑑

−𝐿

𝑅𝑇
⇒ ln𝑃 =

−𝐿

𝑅𝑇
+ 𝐶 ⇒ 𝑃 = 𝐶𝑒−

𝐿
𝑅𝑇 

 

  



PROBLEM 3 

 

a) 

Use the hint to find the density of states as a function of energy. Remember to multiply 

with a factor of 2 because of the two spins states of the spin 
1

2
 fermion. 

 

𝑔(𝑝)𝑑𝑝 =
2𝑉

ℎ3
4𝜋𝑝2𝑑𝑝

𝑝=
𝐸

𝑐

⇒  𝑔(𝐸)𝑑𝐸 =
2𝑉

ℎ3
4𝜋 (

𝐸

𝑐
)
2

𝑑 (
𝐸

𝑐
) =

8𝜋𝑉

(ℎ𝑐)3
𝐸2𝑑𝐸 

 

Total number of fermions is given by, 

 

𝑁 = ∫ 𝑛(𝐸)

∞

0

𝑔(𝐸)𝑑𝐸 

with, 

𝑛(𝐸) =
1

𝑒𝛽(𝐸−𝜇) + 1
 

 

the mean number of fermions with energy 𝐸 (Fermi-Dirac distribution) 

 

Thus, 

 

𝑁 =
8𝜋𝑉

ℎ3𝑐3
∫

𝐸2𝑑𝐸

𝑒𝛽(𝐸−𝜇) + 1

∞

0

 

b) 

At absolute zero the fermion gas is completely degenerate and all energy levels up to a 

maximum level 𝐸𝐹 (Fermi level) are filled with 1 fermion each and all the other energy 

levels are empty. Thus, 𝑛(𝐸) = 1  if 𝐸 < 𝐸𝐹  and 𝑛(𝐸) = 0  if 𝐸 > 𝐸𝐹 . Consequently, the 

total number of electrons 𝑁 is given by, 

 

𝑁 =
8𝜋𝑉

ℎ3𝑐3
∫ 𝐸2𝑑𝐸

𝐸𝐹

0

=
8𝜋𝑉

3ℎ3𝑐3
𝐸𝐹
3 ⇒𝐸𝐹 = ℎ𝑐 (

3

8𝜋

𝑁

𝑉
)

1
3
 

 

c) 

𝑈 = ∫ 𝐸𝑛(𝐸)

∞

0

𝑔(𝐸)𝑑𝐸 = ∫ 𝐸

𝐸𝐹

0

𝑔(𝐸)𝑑𝐸 ⇒ 

 



𝑈 =
8𝜋𝑉

ℎ3𝑐3
∫ 𝐸3

𝐸𝐹

0

𝑑𝐸 =
8𝜋𝑉

4ℎ3𝑐3
𝐸𝐹
4 =

3

4
𝑁𝐸𝐹 

 

d) 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 +𝜇𝑑𝑁
𝑇→0
𝑑𝑁=0

⇒   𝑃 = −
𝑑𝑈

𝑑𝑉
 

 

 

𝑃 = −
𝑑

𝑑𝑉
(
3

4
𝑁𝐸𝐹) = −

𝑑

𝑑𝑉
(
3

4
𝑁ℎ𝑐 (

3

8𝜋

𝑁

𝑉
)

1
3
) =

1

4
ℎ𝑐 (

3

8𝜋
)

1
3
(
𝑁

𝑉
)

4
3
 

e) 

Because of the Pauli exclusion principle electrons (fermions) cannot all be in the ground 

state but occupy different energy levels up to the Fermi energy 𝐸𝐹. When the system is 

compressed to high density the ratio 𝑁/𝑉 increases and thus the Fermi energy 𝐸𝐹 increases. 

This implies that also the momenta of the electrons increase possibly up to (ultra) 

relativistic values. This feature originates from the uncertainty relation: ∆𝑝∆𝑥 ≥ ℏ. When 

the electron gas is compressed to high density the distance ∆𝑥 between the electrons 

decreases, and the momenta ∆𝑝 of the electrons increase. 

  



PROBLEM 4 

a) 

𝒵 = ∑ 𝑒𝛽[𝜇(𝑛1+𝑛2+⋯)−(𝑛1𝜀1+𝑛2𝜀2+⋯)]

𝑛1,𝑛2,⋯

= ∑ 𝑒𝛽(𝜇−𝜀1)𝑛1+𝛽(𝜇−𝜀2)𝑛2+⋯⇒

𝑛1,𝑛2,⋯

 

 

 

𝒵 = ∑ 𝑒𝛽(𝜇−𝜀1)𝑛1𝑒𝛽(𝜇−𝜀2)𝑛2

𝑛1,𝑛2,⋯

×⋯ =∑𝑒𝛽(𝜇−𝜀1)𝑛1

𝑛1

∑𝑒𝛽(𝜇−𝜀2)𝑛2 ×⋯

𝑛2

⇒ 

 

The equality above holds because for each 𝑛𝑖 the factor 𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖 is a constant for all the 

sums over 𝑛𝑗 , with 𝑗 ≠ 𝑖. 

𝒵 =∏∑𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

𝑛𝑖

∞

𝑖=1

=∏𝒵𝑖

∞

𝑖=1

 

 

Start with 

𝑃(𝑛1, 𝑛2, ⋯𝑛𝑖 , ⋯ ) =
𝑒𝛽[𝜇(𝑛1+𝑛2+⋯)−(𝑛1𝜀1+𝑛2𝜀2+⋯)]

𝒵
⇒ 

 

 

𝑃(𝑛1, 𝑛2, ⋯𝑛𝑖 , ⋯ ) =
𝑒𝛽(𝜇−𝜀1)𝑛1+𝛽(𝜇−𝜀2)𝑛2+⋯

𝒵
⇒ 

 

 

𝑃(𝑛1, 𝑛2, ⋯ 𝑛𝑖, ⋯ ) =
𝑒𝛽(𝜇−𝜀1)𝑛1𝑒𝛽(𝜇−𝜀2)𝑛2 ×⋯

𝒵
⇒ 

 

 

𝑃(𝑛1, 𝑛2, ⋯𝑛𝑖 , ⋯ ) =
∏ 𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖∞
𝑖=1

∏ 𝒵𝑖
∞
𝑖=1

⇒ 

 

 

𝑃(𝑛1, 𝑛2, ⋯𝑛𝑖 , ⋯ ) =∏𝑃𝑖(𝑛𝑖)

∞

𝑖=1

 with 𝑃𝑖(𝑛𝑖) =
𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

𝒵𝑖
 

 

This means that the probability to find 𝑛𝑖 bosons in the i-th single energy state is 

independent of the occupancies of all other single energy states. 

 

b) 

The function 𝑃𝑖(𝑛𝑖) is the probability of finding 𝑛𝑖 bosons in the i-th single boson state. 

 

c) 



There can be any number of bosons in each single boson state (𝑛𝑖 = 0,1,2,3,⋯) thus, 

 

𝒵𝑖 = ∑ 𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

∞

𝑛𝑖=0,

= ∑ (𝑒𝛽(𝜇−𝜀𝑖))
𝑛𝑖

∞

𝑛𝑖=0,

=
1

1 − 𝑒𝛽(𝜇−𝜀𝑖)
 

 

d) 

The mean occupation number is defined as: 

〈𝑛𝑖〉 = ∑𝑛𝑖
𝑛𝑖

𝑃𝑖(𝑛𝑖) 

Performing the differentiation: 

 

1

𝛽
(
𝜕 ln𝒵𝑖
𝜕𝜇

)
𝑇,𝑉

=
1

𝛽

𝜕

𝜕𝜇
ln(∑𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

𝑛𝑖

) =
∑ 𝑛𝑖𝑒

𝛽(𝜇−𝜀𝑖)𝑛𝑖
𝑛𝑖

∑ 𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖𝑛𝑖

=∑𝑛𝑖
𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

𝒵𝑖
𝑛𝑖

⇒ 

 

1

𝛽
(
𝜕 ln𝒵𝑖
𝜕𝜇

)
𝑇,𝑉

=∑𝑛𝑖
𝑒𝛽(𝜇−𝜀𝑖)𝑛𝑖

𝒵𝑖
𝑛𝑖

=∑𝑛𝑖𝑃𝑖(𝑛𝑖)

𝑛𝑖

= 〈𝑛𝑖〉 

 

We now can calculate 〈𝑛𝑖〉 as: 

 

〈𝑛𝑖〉 =
1

𝛽
(
𝜕 ln𝒵𝑖
𝜕𝜇

)
𝑇,𝑉

=
1

𝛽

𝜕

𝜕𝜇
ln (

1

1 − 𝑒𝛽(𝜇−𝜀𝑖)
) =

𝑒𝛽(𝜇−𝜀𝑖)

1 − 𝑒𝛽(𝜇−𝜀𝑖)
=

1

𝑒𝛽(𝜀𝑖−𝜇) − 1
 

e) 

𝑁 = ∫ 𝑔(𝜀)𝑛(𝜀)𝑑𝜀

∞

0

 

In this 𝑔(𝜀)𝑑𝜀 is the density of states and 𝑛(𝜀) is the mean occupation number. 

The density of states follows from the hint and converting momentum to energy (using =
𝑝2

2𝑚
 ) as the variable, 

 

Substitute 

𝑝2 = 2𝑚𝜀 and 2𝑝𝑑𝑝 = 2(2𝑚𝜀)
1
2𝑑𝑝 = 2𝑚𝑑𝜀 ⇒ 𝑑𝑝 =

(2𝑚)
1
2

2√𝜀
𝑑𝜀 

 

in  

𝑔(𝑝)𝑑𝑝 =
𝑉

ℎ3
4𝜋𝑝2𝑑𝑝 

to find, 

𝑔(𝜀)𝑑𝜀 =
𝑉

ℎ3
4𝜋2𝑚𝜀

(2𝑚)
1
2

2√𝜀
𝑑𝜀 =

2𝜋𝑉

ℎ3
(2𝑚)

3
2√𝜀𝑑𝜀 



 

The mean occupation number is (from d): 

𝑛(𝜀) =
1

𝑒𝛽(𝜀−𝜇) − 1
 

 

𝑁 = ∫

2𝜋𝑉
ℎ3
(2𝑚)

3
2√𝜀

𝑒𝛽(𝜀−𝜇) − 1
𝑑𝜀

∞

0

= [
2𝜋𝑉

ℎ3
(2𝑚)

3
2]∫

√𝜀

𝑒𝛽(𝜀−𝜇) − 1
𝑑𝜀

∞

0

 

However, the ground state 𝜀 = 0 has zero weight in this integral because of the √𝜀 
dependency and is completely neglected. This situation can be mended by considering the 

ground state separately, the occupation number of the ground state is: 𝑁1 =
1

𝑒−𝛽𝜇−1
, thus,  

𝑁 = 𝑁1 + [
2𝜋𝑉

ℎ3
(2𝑚)

3
2]∫

√𝜀

𝑒𝛽(𝜀−𝜇) − 1
𝑑𝜀

∞

0

 

f) 

At temperatures above the critical temperature 𝑇𝑐 the fraction of particles in the ground 

state is practically zero; as the temperature decreases below 𝑇𝑐 the fraction of particles in 

the ground state increases. These particles have zero energy and zero momentum. 

  

g) 

At the critical temperature we have essentially 𝑁1 = 0 and 𝜇 = 0 and thus (using 𝑧 = 𝛽𝑐𝜀, 
in the integral) 

 

𝑁 = [
2𝜋𝑉

ℎ3
(2𝑚)

3
2]∫

√𝜀

𝑒𝛽𝑐𝜀 − 1
𝑑𝜀

∞

0

= [
2𝜋𝑉

ℎ3
(2𝑚)

3
2] (

1

𝛽𝑐
)

3
2
∫

√𝑧

𝑒𝑧 − 1
𝑑𝑧

∞

0

⇒ 

 

𝑁 = [
2𝜋𝑉

ℎ3
(2𝑚)

3
2] (

1

𝛽𝑐
)

3
2
2.612

√𝜋

2
⇒ 𝑇𝑐

3
2 =

𝑁

[
2𝜋𝑉
ℎ3
(2𝑚)

3
2] (2.612

√𝜋
2 )𝑘

3
2

 

 

Below the critical temperature the chemical potential is essentially zero and we have for 

𝑇 < 𝑇𝐶; 

 

𝑁 = 𝑁1 + [
2𝜋𝑉

ℎ3
(2𝑚)

3
2]∫

√𝜀

𝑒𝛽𝜀 − 1
𝑑𝜀

∞

0

= 𝑁1 + [
2𝜋𝑉

ℎ3
(2𝑚)

3
2] (
1

𝛽
)

3
2
2.612

√𝜋

2
⇒ 

 

𝑁 = 𝑁1 + 𝑁 (
𝛽𝑐
𝛽
)

3
2
⇒
𝑁1
𝑁
= 1 − (

𝑇

𝑇𝑐
)

3
2
 


